
Rails Engines
Rails engines range from simple plugins to powerful micro-applications. The discussions we’ve had
so far about Railties are closely related to the function of a Rails engine. One interesting side note
is that a Rails application is a Rails engine itself — so it’s easy to see how we can encapsulate just
about any normal Rails functionality in an engine, to ultimately embed in a host application.

The Rails engine documentation⁹⁶ is well written and touches on the many ways to include
functionality. I won’t cover every detail of Rails engines in this chapter, just enough to get you started
making use of them. It’s possible to make full applications (routes, controllers, models, migrations,
etc.) using Rails engines. However, we’re going to focus on some of the simpler elements of a Rails
engine that allow us to integrate functionality where a Railtie won’t suffice. Just know, there is
far more you can do with Rails engines than what we’ll cover here. The documentation link above
provides examples of many of those use cases.

Use Case

I wrote a blog post about rendering relatives timestamps in Rails⁹⁷ on the client. Using a client-side
solution like timeago.js⁹⁸ allows timestamps to update in real-time, so when we see “15 minutes ago”,
we know the record really is 15 minutes old.

The other benefit to using a client-side library like timeago.js is timezone offsets are handled
automatically. All we have to do is render the UTC time in the view and javascript will handle
converting it to the relative timezone of the browser, along with keeping it updated as the page
becomes stale.

For this example, we’ll make a gem that integrates timeago.js in to a Rails application and provides
a simple way to render relative timestamps in a view.

The Implementation

The implementation of our gem will require:

1. Adding the timeago.js javascript asset to the asset pipeline
2. Adding a javascript asset to invoke the timeago() plugin

⁹⁶http://guides.rubyonrails.org/engines.html?utm_source=build-a-ruby-gem&utm_medium=ebook&utm_campaign=rails-engines
⁹⁷http://brandonhilkert.com/blog/relative-timestamps-in-rails/?utm_source=build-a-ruby-gem&utm_medium=ebook&utm_campaign=rails-

engines
⁹⁸http://timeago.yarp.com/?utm_source=build-a-ruby-gem&utm_medium=ebook&utm_campaign=rails-engines

Rails Engines 110

3. Adding a view helper to render html in a format the javascript plugin expects

The third requirement was covered in a previous chapter on view helpers, so we’ll cruise through
that one quickly. However, including assets hasn’t been covered and it’s the perfect segue in to the
benefits of using a Rails engine, rather than just a Railtie.

Rails engines allow us create the same directory structure as a Rails application, since a Rails
application is just a Rails engine. By indicating our gem is an engine (we’ll see how to do this
soon…), Rails will pick up the related files in the Rails-specific directories in our gem. So if we add
a file in the app/helpers/ directory of our gem, that same file will be available in the host Rails
application. The same approach applies for controllers, models, migrations, assets and anything else
we would add to a typical Rails application.

To start, let’s create our new gem:

1 $ bundle gem time_ago

2 create time_ago/Gemfile

3 create time_ago/Rakefile

4 create time_ago/LICENSE.txt

5 create time_ago/README.md

6 create time_ago/.gitignore

7 create time_ago/time_ago.gemspec

8 create time_ago/lib/time_ago.rb

9 create time_ago/lib/time_ago/version.rb

10 Initializing git repo in /Users/bhilkert/Dropbox/code/time_ago

When we include javascript libraries from external sources, the vendor/ directory is the most
appropriate place for them. Let’s create the directory vendor/assets/javascripts/ and place the
source for the timeago.js plugin there:

1 ├── Gemfile

2 ├── LICENSE.txt

3 ├── Rakefile

4 ├── bin

5 │ ├── console

6 │ └── setup

7 ├── lib

8 │ ├── time_ago

9 │ │ └── version.rb

10 │ └── time_ago.rb

11 ├── time_ago.gemspec

12 └── vendor

13 └── assets

Rails Engines 111

14 └── javascripts

15 └── jquery.timeago.js

To create our view helper, we’ll add the /app/helpers/ directory:

1 ├── Gemfile

2 ├── LICENSE.txt

3 ├── Rakefile

4 ├── app

5 │ └── helpers

6 │ └── time_ago_helper.rb

7 ├── bin

8 │ ├── console

9 │ └── setup

10 ├── lib

11 │ ├── time_ago

12 │ │ └── version.rb

13 │ └── time_ago.rb

14 ├── time_ago.gemspec

15 └── vendor

16 └── assets

17 └── javascripts

18 └── jquery.timeago.js

The code for the view helper is shown below:

1 module TimeAgoHelper

2 def timeago(time, options = {})

3 options[:class] ||= "timeago"

4 content_tag(

5 :time,

6 time.to_s,

7 options.merge(datetime: time.getutc.iso8601)

8) if time

9 end

10 end

Lastly, we want to include a javascript asset to invoke the timeago.js plugin on page change (this
includes the initial page load). This is almost identical to the first step of including the vendored
timeago.js asset, except we’re going to put it in the app/assets/javascripts/ directory since it’s
not an external library, but rather a javascript include that will invoke the javascript plugin.

Let’s create the directory app/assets/javascripts/ and place the following file there:

Rails Engines 112

1 // app/assets/javascripts/timeago.js

2 //

3 // jQuery Timeago setup for timeago helper

4 //

5 //= require jquery.timeago

6

7 $(document).on('page:change', function() {

8 $("time.timeago").timeago();

9 });

This file serves as both a manifest file for the jquery.timeago.js asset and a function to invoke the
plugin whenever the page loads or changes.

Lastly, we need to designate our gem as an engine. The default entry file that was created when we
used bundler to bootstrap our gem looked like this:

1 require "time_ago/version"

2

3 module TimeAgo

4 end

All we need to do is add the Engine class and inherit from Rails::Engine, giving us:

1 require "time_ago/version"

2

3 module TimeAgo

4 class Engine < ::Rails::Engine

5 end

6 end

At this point, because our gem is so closely tied to Rails, we should add Rails as a dependency in
our gemspec:

Rails Engines 113

1 # coding: utf-8

2 lib = File.expand_path('../lib', __FILE__)

3 $LOAD_PATH.unshift(lib) unless $LOAD_PATH.include?(lib)

4 require 'time_ago/version'

5

6 Gem::Specification.new do |spec|

7 spec.name = "time_ago"

8 spec.version = TimeAgo::VERSION

9 spec.authors = ["Brandon Hilkert"]

10 spec.email = ["brandonhilkert@gmail.com"]

11 spec.summary = %q{A gem to integrate the timeago.js}

12 spec.description = %q{A gem to integrate the timeago.js}

13 spec.homepage = ""

14 spec.license = "MIT"

15

16 spec.files = `git ls-files -z`.split("\x0")

17 spec.executables = spec.files.grep(%r{^bin/}) { |f| File.basename(f) }

18 spec.test_files = spec.files.grep(%r{^(test|spec|features)/})

19 spec.require_paths = ["lib"]

20

21 spec.add_dependency "rails", ">= 3.1"

22

23 spec.add_development_dependency "bundler", "~> 1.5"

24 spec.add_development_dependency "rake"

25 end

Note: In addition to adding Rails as a dependency, we’ve also specified that it’s only compatible with
Rails version 3.1 or later because of the need for the asset pipeline.

Moving to a sample Rails application, we can include the gem in our host application by adding it
to the Gemfile using the path option:

1 gem "time_ago", path: "../time_ago"

Since we included an asset that needs to be included in the Rails asset pipeline, we have to take one
more step and instruct the user to add the following to their app/assets/javascripts/applica-
tion.js manifest file:

1 //= require timeago

This directive actually refers to the app/assets/javascripts/timeago.js file we included in our
gem to invoke the timeago.js plugin on page change.

Now when we load our Rails application, tags using the timeago view helper get rendered to UI as:

Rails Engines 114

1 <time class="timeago" datetime="2014-01-08T14:55:58Z">

2 2014-01-08 14:55:58 UTC

3 </time>

and are updated by the javascript plugin to:

1 <time class="timeago" datetime="2014-01-08T15:04:10Z"

2 title="2014-01-08 15:04:10 UTC">

3 18 days ago

4 </time>

Implementations in the Wild

One of the greatest examples of making the most of a Rails engine is Devise⁹⁹. Devise is one of
the more popular options for adding authentication to a Rails application. Just looking at the app
directory of the gem¹⁰⁰, we can see Devise adds functionality through controllers, helpers, mailers
and views. The structure of Devise is fairly complicated because it is doing somuch, but here is where
the Rails engine is defined¹⁰¹ allowing the elements in the /app directory (among other things) to be
integrated in to a Rails application.

The local_time gem¹⁰² fromBasecamp is a simple example of using the asset includes of a Rails engine
to render relative timestamps. It’s similar to the one we created above, but uses the moment.js¹⁰³
javascript library instead. Because it’s well tested and likely to be supported long-term, I’d suggest
using it instead of the gem we created above.

Summary

The introduction of Rails engines created a new way to organize micro-applications and integrate
them into a host application. Doing so keeps features and otherwise separate logic truly separate.

I’ve only scratched the surface on what a gem can provide through engines. It’s certainly more
detailed than just asset and view helper integration, as shown above. If you’re interested in learning
more about the other features Rails engine provide, the Rails guides¹⁰⁴ are a great place to start.

In the next and final chapter, we’ll explore open source projects and the best ways to get started
contributing.

⁹⁹https://github.com/plataformatec/devise?utm_source=build-a-ruby-gem&utm_medium=ebook&utm_campaign=rails-engines
¹⁰⁰https://github.com/plataformatec/devise/tree/master/app?utm_source=build-a-ruby-gem&utm_medium=ebook&utm_campaign=rails-

engines
¹⁰¹https://github.com/plataformatec/devise/blob/master/lib/devise/rails.rb?utm_source=build-a-ruby-gem&utm_medium=ebook&utm_

campaign=rails-engines#L5
¹⁰²https://github.com/basecamp/local_time?utm_source=build-a-ruby-gem&utm_medium=ebook&utm_campaign=rails-engines
¹⁰³http://momentjs.com/?utm_source=build-a-ruby-gem&utm_medium=ebook&utm_campaign=rails-engines
¹⁰⁴http://guides.rubyonrails.org/engines.html?utm_source=build-a-ruby-gem&utm_medium=ebook&utm_campaign=rails-engines

